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Abstract: The two fungal human pathogens, Candida auris and Candida albicans, possess a variety
of virulence mechanisms. Among them are the formation of biofilms to protect yeast against harsh
conditions through the development of (pseudo)hyphae whilst also facilitating the invasion of host
tissues. In recent years, increased rates of antifungal resistance have been associated with C. albicans
and C. auris, posing a significant challenge for the effective treatment of fungal infections. In the
course of our ongoing search for novel anti-infectives, six selected azaphilones were tested for their
cytotoxicity and antimicrobial effects as well as for their inhibitory activity against biofilm and
hyphal formation. This study revealed that rubiginosin C, derived from stromata of the ascomycete
Hypoxylon rubiginosum, effectively inhibited the formation of biofilms, pseudohyphae, and hyphae
in both C. auris and C. albicans without lethal effects. Crystal violet staining assays were utilized to
assess the inhibition of biofilm formation, while complementary microscopic techniques, such as
confocal laser scanning microscopy, scanning electron microscopy, and optical microscopy, were used
to investigate the underlying mechanisms. Rubiginosin C is one of the few substances known to
effectively target both biofilm formation and the yeast-to-hyphae transition of C. albicans and C. auris
within a concentration range not affecting host cells, making it a promising candidate for therapeutic
intervention in the future.

Keywords: Candida auris; Candida albicans; biofilms; pseudohyphae; hyphae; extracellular vesicles;
drug resistance; virulence

1. Introduction

Antimicrobial resistance has been a significant and ongoing challenge to public health
and manifests itself when pathogenic species become able to eliminate or withstand antibi-
otic treatments [1,2]. Among the various factors contributing to antimicrobial recalcitrance
in bacterial and fungal diseases, biofilm populations play a critical role. According to the
National Institute of Health, biofilm formation is linked to 65% of microbial and 80% of
chronic infections [3].

Candida species are typically commensal yeasts that inhabit human skin and mucosal
surfaces. However, they can also cause both superficial and life-threatening systemic
infections in the human body, such as oral or vaginal candidiasis, as well as nosocomial
bloodstream infections [4,5]. The pathogenicity of Candida species is driven by the expres-
sion of specific virulence factors, such as biofilm formation, yeast-to-hyphae transition, or
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the secretion of proteolytic and lipolytic enzymes, which are associated with high mortality
rates of infections in hospital settings [6,7].

The process of biofilm formation in Candida involves four stages: (i) attachment of
yeast cells to a solid surface (within 90 min); (ii) formation of hyphae or pseudohyphae
and involvement in biofilm formation; (iii) elongation of hyphae and growth of other
polymorphic cells to form an extracellular matrix; (iv) release of new yeast cells [8–11].
The formation of biofilms not only facilitates the attachment on polymeric surfaces, for
example, on medical devices introduced into the human body, but also promotes drug
resistance [8]. The underlying resistance mechanisms might be multifactorial, including,
e.g., extracellular matrix polysaccharides and efflux pumps [9]. While polysaccharides can
impede the activity of antifungal agents by preventing them from reaching their target
sites, an increased efflux pump activity can transport antibiotics from inside the cell to the
exterior environment [9].

Among all Candida species, C. albicans is considered to be the most commonly found
fungus, causing approximately 50–90% of candidiasis infections [7]. Compared to other
Candida species, C. albicans can produce denser biofilms [11]. Another emerging nosoco-
mial pathogen is C. auris, which was first described in 2009 in an external ear canal in a
patient from Japan [12]. After its initial identification, numerous outbreaks of invasive
infections have been reported in hospitals across several countries and it is rapidly spread-
ing worldwide [13–15]. Candida auris is resistant to multiple drugs, especially azoles (e.g.,
fluconazole), polyenes (e.g., amphotericin B), and echinocandins (e.g., caspofungin) [16],
and can survive in high-salt and high-temperature environments [17]. It forms biofilms
that colonize the skin and can persist on medical device surfaces for up to 14 days [18],
leading to infections such as bloodstream infections, urinary tract infections, and invasive
candidiasis with high mortality rates [19]. Due to its resistance and ability to form biofilms,
it is difficult to eradicate [9]. In general, the biofilms of C. auris are thinner than that of
C. albicans, although the ability to form biofilms varies among C. auris isolates [20,21].
Furthermore, several studies have indicated that the pathogenicity of C. auris is comparable
to, or even more virulent than, that of C. albicans [6,22].

Fungi are prolific producers of structural complex secondary metabolites with various
biological activities. Over the last century, they have provided several lead structures and
pharmacophores that benefit humans. In recent years, novel azaphilones have been identi-
fied that exhibit a wide range of biological activities, including antimicrobial, antifungal,
antiviral, antibiofilm, antitumor, cytotoxic, and anti-inflammatory activities [23–25]. As-
comycetes of the family Hypoxylaceae (Xylariales) are by far the most versatile producers
of azaphilones [26]. Due to their chemotaxonomic significance, the pigments have already
been successfully consulted to discriminate within the genera and species [27–29]. The
Hypoxylaceae currently comprises 15 genera (www.mycobank.org; accessed on 3 May
2023), such as Hypoxylon, Daldinia, or Jackrogersella, inhabiting a multitude of habitats, e.g.,
as endophytes or insect-associates, colonizing lichens, or stromata on decaying wood [26].
It was recently shown that highly complex azaphilones were present in archaeological
specimens of Hypoxylon fragiforme, estimated to be over 1000 years old [30]. Here, we
focused on rubiginosin- and rutilin-type azaphilones, obtained from the stromata of the as-
comycetes Hypoxylon rubiginosum and Hypoxylon texense, which have the ability to produce
the pigments around the perithecia [30–32]. Weak to moderate antimicrobial activities of
some rubiginosin- and rutilin-type azaphilones against Bacillus subtilis and Staphylococcus
aureus were previously reported [28].

In the course of our ongoing search for novel anti-infectives, we conducted a study to
investigate the potential of the selected azaphilones (Figure 1) for their inhibitory efficacy
against (pseudo)hyphae development and their effects on biofilms. Our investigation
focused on their effectiveness against the two invasive fungal pathogens C. albicans and
C. auris. Although all pigments share the same pyronoquinone core, they differ in the type
of substituents. Thus, rubiginosin C (Rub C) and rubiginosin W (Rub W) are substituted by
a linear polyketide moiety of different lengths and substitution patterns. In contrast, the
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monomeric rubiginosin A (Rub A) and rubiginosin Z (Rub Z) carry an orsellinic acid (OA)
unit, while rutilin A (Rut A) and rutilin B (Rut B) are their dimeric congeners.
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2. Materials and Methods
2.1. Isolation of Selected Azaphilones and Preparation of Pathogenic Strains

Isolation of all azaphilones was achieved in previous work by Becker et al. [28], and
aliquots were used herein (Supplementary Material for detailed information).

Strains C. auris [DSM 21092] and C. albicans [DSM 1665, DSM 11225] were obtained
from the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ, Braun-
schweig, Germany) as a freeze-dried sample. The organisms were cultured in Yeast Extract
Peptone Dextrose (YPD) medium (30 ◦C, 120 rpm, 2 d). The 1 mL aliquots with 20% glycerol
were stored at −20 ◦C for short-term use, and −80 ◦C for long-term use. Strain C. albicans
CAI-4 HWP1-lacZ [ZK3379] [33] was provided by Prof. Ursula Bilitewski (Helmholtz Centre
for Infection Research GmbH, Braunschweig, Germany) in 1 mL aliquots, stored in 20%
glycerol at −20 ◦C.
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2.2. Determination of Minimum Inhibitory Concentration (MIC) and Cytotoxicity

The MICs of rubiginosin- and rutilin-type azaphilones—in detail, Rub A, C, W, Z, and
Rut A and B—were determined as described previously [34] using the selected pathogens
C. albicans [DSM 11225, DSM 1665], C. albicans CAI-4 HWP1-lacZ [ZK3379] and C. auris
[DSM 21092] (see Table S1 for detailed information). All compounds were tested within
the concentration range of 250 µg/mL–2 µg/mL for C. albicans [DSM 11225, DSM 1665], C.
albicans CAI-4 HWP1-lacZ [ZK3379], C. auris [DSM 21092].

Cytotoxic effects were evaluated on human endocervical adenocarcinoma KB-3-1
[ACC 158] cells and mouse fibroblasts L929 [ACC 2] upon treatment with Rub C, W, and
Rut A and B within the concentration range of 37 µg/mL–0.63 ng/mL. The half-maximum
inhibitory concentrations (IC50) were determined by standard MTT assays as reported
previously [32] (see the Supplementary Material for detailed information). The IC50 values
of Rub A and Z have currently been reported [28].

2.3. Antibiofilm Assay with Crystal Violet
2.3.1. Biofilm Formation Assay of C. auris and C. albicans

The fungal pathogens C. auris [DSM 21095] or C. albicans [DSM 11225] were cultured
from stock in 25 mL YPD medium in a 250 mL flask (30 ◦C, 100 rpm, 18 h). The turbidity of
the broth was measured at 280 nm using a spectrophotometer (Nanodrop 2000c, Thermo
Fisher Scientific, Waltham, MA, USA) and diluted to match the turbidity of a 0.5 McFarland
standard in RPMI 1640 medium (Gibco, New York, NY, USA; Thermo Fisher Scientific),
supplemented with 0.165 mM 3-(N-morpholino)propanesulfonic acid (MOPS, Carl Roth,
Karlsruhe, Germany) for C. auris [35,36], or 0.05 McFarland standard in RPMI 1640 medium
in the case of C. albicans [37–39]. Subsequently, 150 µL of the fungal dispersion were added
into each well of a 96-well microtiter plate (Falcon no. 351172, Thermo Fisher Scientific) and
further incubated (37 ◦C, 150 rpm, 2 h [C. auris] or 90 min [C. albicans]). The supernatant
was discarded and the plate was rinsed one time by using a PBS buffer. Afterwards,
azaphilones (Rub A, C, W, Z, and Rut A and B) were serially diluted in 150 µL in fresh
medium to concentrations of 250–2 µg/mL (Rub C for C. auris: 250–0.02 µg/mL). Methanol
(2.5%) was used as a solvent control and both, nystatin (NYS; Thermo Fisher Scientific) and
farnesol (FA; Sigma Aldrich, St. Louis, MO, USA) as positive controls (250–2 µg/mL) for
C. auris and C. albicans, respectively. Plates were further incubated (37 ◦C, 150 rpm, 24 h).
The supernatant was discarded and biofilms were washed with PBS, stained by adding
150 µL of the crystal violet (CV; Sigma Aldrich) solution (0.1%), and incubated (room
temperature, 25 min). Afterwards, the plates were washed twice with PBS buffer. A total of
150 µL ethanol (95%) were applied to dissolve the biofilm-bound CV. The absorbance was
measured by a plate reader (Synergy 2, BioTek, Santa Clara, CA, USA) at 570 nm for C. auris
or 610 nm for C. albicans. Error bars indicate SD with duplicates in two biological repeats.

2.3.2. Assay to Determine Rub C Effects on C. auris Biofilms of Various Ages

The turbidity of C. auris [DSM 21092] dispersion was measured at 280 nm and diluted
to the turbidity of a 0.5 McFarland standard. C. auris was cultured in RPMI 1640 medium
supplemented with 0.165 mM MOPS (37 ◦C, 150 rpm, 2 h, 12 h, 24 h) in 96-well non-tissue
microtiter plates (Falcon no. 351172, Thermo Fisher Scientific) [40]. After incubation,
C. auris biofilms of various ages (2 h, 12 h, 24 h) were washed once by PBS buffer and
treated (37 ◦C, 150 rpm, 24 h) with serial diluted Rub C (250–0.02 µg/mL) in fresh RPMI
1640 medium supplemented with 0.165 mM MOPS. Samples of each time point were further
processed and evaluated by a microtiter plate reader, as described above.

2.4. Observations of Biofilm by Confocal Laser Scanning Microscopy (CLSM)

A culture of C. auris [DSM 21092] was adjusted to the turbidity of a 0.5 McFarland
standard and cultured (37 ◦C, 2 h) in RPMI 1640 medium supplemented with 0.165 mM
MOPS to allow for the attachment of fungal cells to µClear microtiter plates (Greiner Bio-
One, Kremsmünster, Austria) [41]. Afterwards, wells were gently rinsed with PBS buffer
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and incubated with 150 µL of fresh medium containing Rub C in the concentrations 250
and 15.6 µg/mL, respectively. Medium with 2.5% methanol was used as a solvent control.
The plates were covered with an air-permeable breath seal cover foil (Greiner Bio-One)
and further incubated (37 ◦C, 24 h). Afterwards, the supernatant with planktonic cells
was slowly removed with a multi-channel pipette. Biofilms were gently washed once
with PBS buffer and stained with the fluorescent dyes FUN-1 (Invitrogen, Waltham, MA,
USA; Thermo Fisher Scientific) and Calcofluor White M2R (Invitrogen, Thermo Fisher
Scientific) by incubating (37 ◦C, 30 min) the wells with 150 µL PBS containing 10 µM
FUN-1 and 25 µM M2R in the dark [42]. Plasma membrane integrity and metabolic func-
tion of fungi are required to convert the yellow-green-fluorescent intracellular staining
of FUN 1 into the red-orange-colored intravascular structures. This contrasts with the
yellow-green fluorescence of dead cells where FUN-1 remains in the cytosol. Calcofluor
White M2R labels cell-wall chitin and beta glucoside bonds appearing as green, fluores-
cent signals regardless of the metabolic state of the cell. Stained biofilms were observed
using an inverted, confocal laser scanning microscope SP8 (Leica Microsystems, Wetzlar,
Germany) and acquired with the software LAS X and the following settings: Z-step size is
2 µm, green (excitation = 488 nm and emission = 530 nm) and red (excitation = 488 nm and
emission = 620 nm) fluorescence signal. Image analysis was performed with the software Im-
age J 1.53 k (National Institute of Health, Bethesda, MD, USA) for quantification and Imaris
9.31 (Oxford, UK) for visualization.

2.5. Colony Forming Units (CFU) and the Growth Curve of Candida
2.5.1. CFU of C. auris

The preculture of C. auris [DSM 21092] was prepared and adjusted to the turbidity as
previously described in Section 2.4. After 2 h of incubation, Rub C was added to each well
to the final concentrations of 250 µg/mL and 15.6 µg/mL. CFU was tested after 12 and 24 h,
respectively. Cells were resuspended in the well 50 times. We prepared a dilution series in 1
to 10 steps (20 µL in 200 µL) down to a final dilution level of 10−6 and platted 100 µL of this
last dilution on YPD agar plates using small glass beads (5 to 10) to homogeneously spread
the liquid. Individual yeast colonies on the non-hyphal promoting agar plates were counted
after incubation at 30 ◦C for 2 days [43]. Afterwards, CFUs were calculated considering the
dilution factors. Error bars indicate SD with duplicates in two biological repeats.

2.5.2. The Growth Curve of Candida

The preculture of C. auris [DSM 21095] and C. albicans [DSM 11225] were adjusted to a
0.1 McFarland standard, cultured (37 ◦C, 150 rpm) in RPMI 1640 medium supplemented
with 0.165 mM MOPS and RPMI 1640 medium, respectively, and added together with
Rub C to a 96-well microtiter plate (Falcon no. 351172, Thermo Fisher Scientific) to result
in concentrations of 250 µg/mL and 62.5 µg/mL [44]. The absorbance was measured at
630 nm after 2 h, 5 h, 8 h, 14 h, and 20 h. Methanol (2.5%) was used as a solvent control.
Error bars indicate SD with duplicates in two biological repeats.

2.6. Observations of Candida Cells by Optical Microscopy
2.6.1. Visualization of C. auris and C. albicans Cells

Planktonic cells of C. auris [DSM 21092] or C. albicans [DSM 11225] were incubated with
different concentrations of Rub C in 96-well non-tissue microtiter plates (37 ◦C, 150 rpm,
24 h; C. auris: with 250, 15.6 µg/mL of Rub C in 150 µL RPMI 1640 medium with 0.165 mM
MOPS; C. albicans: with 250, 62.5 µg/mL of Rub C in 150 µL RPMI 1640 medium with 50 nM
glucose (Sigma Aldrich) and 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES, Sigma Aldrich)) [44]. After 24 h of incubation, 30 µL of 25% paraformaldehyde
(PFA, Thermo Fisher Scientific) were added into each well. Planktonic cells were fixed
at room temperature for 30 min and the supernatant of each well was taken out and
collected in a 1.5 mL Eppendorf tube (Lot. I182541I, Eppendorf, Hamburg, Germany)
following centrifugation with 12,000 rpm for 12 min at room temperature. The supernatant
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was removed and the pellet was resuspended in 20 µL PBS buffer. Afterwards, 15 µL
resuspended cells were loaded on microscope slides (LOT 7691777, Thermo Fisher Scientific)
and covered with cover glass (24 × 50 mm Menzel-Gläser, Braunschweig, Germany).
Samples were monitored using an Axio Imager A2 light microscope equipped with a
63×/1.25 oil objective (Zeiss, Jena, Germany) and the Zen blue 3.0 software.

2.6.2. Assay to Determine the Impact of Rub C on Hyphae

C. albicans [DSM 11225] was cultured (37 ◦C, 150 rpm, 24 h and 48 h) in 96-well non-
tissue microtiter plates in RPMI 1640 medium supplemented with 50 nM glucose and
50 mM HEPES to form hyphae. Afterwards, 24 h- and 48 h-old hyphae were treated with
Rub C (62.5 µg/mL) and cultured (37 ◦C, 150 rpm, 2 h, 5 h, 10 h, and 18 h) in fresh RPMI
1640 medium supplemented with 50 nM glucose and 50 mM HEPES for various periods of
time [44]. Each sample was fixed as described in Section 2.6.1 and monitored using an Axio
Imager A2 light microscope equipped with a 63×/1.25 oil objective (Zeiss) and the Zen
blue 3.0 software.

2.7. Observations of Candida Cells by Scanning Electron Microscopy (SEM)

C. auris [DSM 21092] was incubated (37 ◦C, 24 h) with Rub C at the concentration
of 250 and 15.6 µg/mL in 96-well non-tissue microtiter plates in RPMI 1640 medium
supplemented with 0.165 mM MOPS. Cultures were fixed with 5% formaldehyde and
2% glutaraldehyde (final concentrations) and washed twice in TE buffer (20 mM TRIS
with 1 mM EDTA, pH 6.9). A 50 µL aliquot was added to round poly-L-lysine pretreated
coverslips and incubated (room temperature, 10 min). Further processing was carried out
as previously described with slight modifications [45]. In brief, cells were fixed for 10 min
on the coverslip with TE buffer including 1% glutaraldehyde (final concentration). The
coverslips were washed twice in TE buffer and dehydrated in 10 min steps on ice with a
graded series of acetone (10%, 30%, 50%, 70%, and 90%), followed by two steps in 100%
acetone at room temperature. The coverslips were mounted onto aluminum stubs with
carbon adhesive discs; they were critical-point-dried with the automated CPD300 (Leica
Microsystems) and gold-palladium-sputter-coated (55 s at 45 mA) with a SCD500 (Bal-
Tec, Balzers, Liechtenstein). Images were acquired with a field emission scanning electron
microscope Zeiss Merlin (Zeiss, Oberkochen, Germany) using the Everhart Thornley HESE2
detector and the in lens SE detector in a 25:75 ratio with an acceleration voltage of 5 kV.

2.8. Screening and Quantification of Hyphal Inhibitory Activities with β-Galactosidase
Activity Assay

The strain C. albicans CAI-4 HWP1-lacZ was directly precultured overnight from a cryo-
stock in a defined medium (6.7 g/L yeast nitrogen base without amino acids, 9 g/L glucose,
1 g/L maltose) at 30 ◦C [46]. Cells were washed twice in pre-warmed hyphae-inducing
medium SLAD (1.7 g/L yeast nitrogen base without amino acids without ammonium
sulfate, 2 g/L glucose, 1 g/L maltose, 6 mg/L ammonium sulfate, buffered to pH 7.3 using
0.165 M MOPS) and resuspended in the same medium. The turbidity of fungal dispersion
was set to a 0.1 McFarland standard (280 nm). A total of 50 µL of the mixed suspension was
added to each well of a 96-well microtiter plate containing azaphilones (Rub A, C, W, Z,
and Rut A and B), serially diluted to concentrations of 100–6.3 µg/mL, and FA was used as
a positive control (100–0.8 µg/mL). Afterwards, the 96-well microtiter plate was incubated
(37 ◦C, 150 rpm, 5 h) to induce hyphal growth.

After, hyphae induction cells were incubated (37 ◦C, 150 rpm, 60 min) with 100 µL of z-
buffer (composed of 60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM Mg2SO4, 1 mM
DTT, and 0.2% sodium lauroyl sarcosinate) to lyse the cells. Following this, 50 µL of 4 g/L
o-nitrophenyl beta-D-galactopyranoside (ONPG, Sigma Aldrich) supplemented with 0.1 M
potassium phosphate buffer (pH 7.0) was added, and the optical density was measured at
414 nm and 550 nm wavelengths using a microtiter plate reader (Synergy 2, BioTek), and
was measured again after 120 min incubation at 37 ◦C to determine the hydrolysis of ONPG
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due to β-galactosidase activity. The absorption by o-nitrophenol was calculated as follows:
(OD414 nm − c × OD550 nm)120 min − (OD414 nm – c × OD550 nm)0 min. c was determined as
1.36 when using microtiter plates as shown in the study of Heintz-Buschart et al. [47].

2.9. Statistical Analysis

Differences between samples and the control group were determined by a two-tailed
Student’s t-test. Statistical significance was defined as p < 0.05. Analysis was carried out
using GraphPad Prism 9® (GraphPad Software, San Diego, CA, USA) [48].

3. Results
3.1. Determination of MIC and Cytotoxicity of Azaphilones

In accordance with previous results, no antimicrobial activity was observed for the six
selected azaphilones (Rub A, C, W, Z, and Rut A and B) against the four strains of Candida
(C. albicans [DSM 1665, DSM 11225], CAI-4 HWP1-lacZ, and C. auris) at the highest tested
concentration of 250 µg/mL (Table 1) [28].

Table 1. Antimicrobial activity of selected rubiginosin- and rutilin-type azaphilones against C. albicans
and C. auris.

Tested
Organisms Strain No.

MIC [µg/mL]

Rub Rut Nystatin

A C W Z A B

C. albicans [28] DSM 1665 – – – – – – 8.3
C. albicans DSM 11225 – – – – – – 8.3
C. albicans
CAI-4
HWP1-lacZ

ZK3379 – – – – – – 8.3

C. auris DSM 21092 – – – – – – 31.3

–: no activity.

Only the dimeric rutilin-type azaphilone derivatives Rut A and Rut B exhibited
significant cytotoxic activity with IC50 values in a range of 1.1–2.2 µM (0.9–1.8 µg/mL)
against murine fibroblasts (L929) and human endocervical adenocarcinoma cells (KB-3-1)
(Table 2). Furthermore, moderate cytotoxicity against these two cell lines with IC50 values
between 3.2 and 5.4 µM (2.6–4.5 µg/mL) has been reported for monomeric OA-carrying
Rub A and Rub Z in a previous study by Becker et al. [28].

Table 2. Cytotoxic activity of selected rubiginosin- and rutilin-type azaphilones against two cell lines.

Cell Lines

IC50 [µM]

Strain No. Rub Rut Epothilone B

A [28] C W Z [28] A B

KB-3-1 ACC 158 5.2 – – 5.2 1.1 1.5 5.3 × 10−5/2.8 × 10−5 [27]
L929 ACC 2 3.2 – – 4.7 1.2 2.2 1.7 × 10−4/3.1 × 10−5 [27]

–: no activity.

3.2. Inhibitory Effects of Azaphilone Pigments against Candida Biofilm Formation

In addition to MIC assays, we also assessed the efficacy of the six azaphilone deriva-
tives (Rub A, C, W, Z, and Rut A and B) towards biofilms of several pathogens (C. albicans,
C. auris, Pseudomonas aeruginosa, and S. aureus) by a CV assay. Rub C, W, and Rut A and
B exhibited moderate inhibitory effects against the biofilm formation of S. aureus, while
none of the tested rubiginosin- or rutilin-type azaphilones was active against P. aeruginosa
(Table S2). Interestingly, moderate activities against the biofilms of S. aureus have also
been reported for the known hybridorubrins, which are structurally related to Rub C and
W [29]. Furthermore, promising inhibitory effects were observed for Rub A, C and W



J. Fungi 2023, 9, 726 8 of 19

against the biofilm formation of C. auris and C. albicans at sub-inhibitory concentrations
(Figures 2 and 3).
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Figure 2. Effect on the biofilm formation of C. auris after 24 h treatment with Rub C and Rub W.
(A) Image of CV-stained wells of a microtiter plate. (B) Efficacy of Rub C and Rub W on the formation
of C. auris biofilms. Nystatin (NYS) was used as positive control, methanol as solvent control. Error
bars indicate SD of duplicates in two biological repeats; p values: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 3. Effect on biofilm formation of C. albicans after 24 h treatment with rubiginosin- and rutilin-
type azaphilones. FA was used as positive control, methanol as solvent control. Error bars indicate
SD of duplicates in two biological repeats; p values: * p < 0.05, ** p < 0.01, *** p < 0.001.

Rub C and Rub W showed prohibitive activity against the formation of C. auris biofilms
(Figure 2), whereas monomeric and dimeric OA-carrying azaphilones (Rub A, Z and Rut
A and B) did not affect the formation (Table S2). Regarding the effects of Rub C, more
biofilm mass was observed above the concentration of 125 µg/mL. At a concentration
of 250 µg/mL, the absorption was almost doubled compared to the control. At Rub C
concentrations between 0.5 and 62.5 µg/mL, we could detect significant inhibitory effects
of ca. 50% against the formation of biofilms. Rub W, which is structurally related to Rub C,
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was slightly less inhibitory. Interestingly, we could not detect a strong increase in biofilm
biomass for Rub W at higher concentrations.

As shown in Figure 3, all tested pigments inhibited the formation of C. albicans biofilms
when applied at the highest test concentration of 250 µg/mL. Only two rubiginosins, Rub A
and C, exhibited activity below this concentration. While Rub A showed significant effects
starting at concentrations above 31.3 µg/mL, Rub C exhibited strong inhibitory effects of ca.
50–80% biofilm reduction at concentrations between 7.8 µg/mL and 250 µg/mL (Figure 3);
hence, even exceeding the inhibitory activity of FA.

3.3. Rub C Activity against Different Maturation Stages of C. auris Biofilm

To investigate the efficacy of Rub C towards different developmental phases of C.
auris biofilm formation, the cells were grown for 2 h (attachment phase), 12 h, and 24 h
(maturating biofilms), respectively, before medium exchange and treatment with Rub C for
24 h. The drug nystatin was used as the positive control (Table S3). The CV assay revealed
that Rub C activity was carried out with a progressing biofilm state (Figure 4).
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Figure 4. Effect on biofilm formation of pre-grown C. auris biofilms of different developmental
stages (2 h, 12 h, and 24 h) after 24 h treatment with Rub C. The solvent methanol served as solvent
control. Error bars indicate SD of duplicates in two biological repeats; p values: * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.4. Visualization of the Effect of Rub C on C. auris Biofilms via CLSM

To address the inhibitory effects of Rub C towards C. auris, CLSM was used to visualize
the three-dimensional structure in the early phase of biofilm development. Analysis of
CLSM exhibited morphological variances in the biofilm structures treated with two different
concentrations of Rub C (Figure 5). At 250 µg/mL, the morphology of the biofilm was
flatter but with densely packed single cells compared to untreated biofilms while less
metabolic activity was observed. In contrast, biofilms exposed to 15.6 µg/mL of Rub C
appeared more porous and the cells were aggregated and more heterogeneous in size
(Figure 5). We also saw differences in the overall biofilm biomass (250 µg/mL > solvent
control or 15.6 µg/mL), as shown in Figure S2.
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Figure 5. Three-dimensional projections and orthogonal sections of C. auris biofilms (24 h after
exposure to the Rub C of attached cells [2 h]). The samples were stained with FUN 1 dye and
Calcoflour White M2R. Regarding intensive overlapping, green-yellow fluorescence represents dead
cells, and intracellular red fluorescence represents metabolically active cells. Treatments were carried
out at concentrations of 250 and 15.6 µg/mL at 37 ◦C in RPMI 1640 (supplemented with 0.165 mM
MOPS). (a) Calcafluor White M2R. (b) FUN-1. (c) Multichannel. (d) Three-dimensional projections.
Exemplary images of 2 independent experiments are shown.

3.5. Candida Growth Is Promoted with High Rub C Concentrations

In addition to CLSM, a CFU assay was conducted from resuspended biofilms in the
same experimental setup to determine the effects of Rub C at concentrations of 250 µg/mL
and 62.5 µg/mL on biofilms of C. auris for two incubation time points: 12 h and 24 h
(Figure 6A). After 12 h of treatment, the concentration of 250 µg/mL Rub C resulted in
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more than double the number of colonies compared to the control, while the sample treated
with 15.6 µg/mL Rub C showed similar values to the control. This ratio changed after 24 h:
while the control nearly doubled in colony numbers, biofilms exposed to 250 µg/mL Rub
C dropped in number and those exposed to 15.6 µg/mL showed no significant change
compared to 12 h incubation. These observations are in line with the time-dependent
treatment of Rub C within the CV assay, where the strongest effects on the 2 h-old biofilms
of C. auris were observed after a 24 h treatment (Figure S1).
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Figure 6. (A). Effects of Rub C on the biofilm formation of C. auris (CFU). Methanol was used
as solvent control. Error bars indicate SD with duplicates in two biological repeats. p values:
** p < 0.01, *** p < 0.001. (B). Effects of Rub C on the growth of C. auris and C. albicans planktonic cells.
The absorption (OD 630 nm) was measured after 2 h, 5 h, 8 h, 14 h, 20 h. Methanol was used as the
solvent control. Error bars indicate SD with duplicates in two biological repeats.

In order to further identify the effects of Rub C on the planktonic cells of C. auris and
C. albicans, the optical density was measured in the presence of Rub C at concentrations
of 250 µg/mL and 62.5 µg/mL over a period of 20 h. The optical density of C. auris and
C. albicans cultures increased faster and remained up to 1.5-fold higher in the presence of
250 µg/mL Rub C, while both the untreated cultures as well as cultures, which are exposed
to 62.5 µg/mL, showed more slowly increasing OD values (Figure 6B).

3.6. Rub C Induces Morphological Changes of C. auris and C. albicans Cells

To further characterize the underlying effects of Rub C on C. auris and C. albicans, plank-
tonic cells were analyzed via light microscopy after incubation in hyphal−growth−promoting
medium RPMI 1640 at 37 ◦C and in the presence of 15.6 µg/mL and 250 µg/mL Rub C.
While the control exhibited the formation of pseudohyphae, no pseudohyphal development
was observed for Rub C-treated cells (Figure 7). At both concentrations, mainly aggregated
cells could be found.

Furthermore, the dimorphic fungus C. albicans also has the ability to grow either
as unicellular yeast or in filamentous pseudohyphal or hyphal forms. Comparable to C.
auris—but significantly more pronounced—were the morphological differences between
incubated cells and the control (Figure 7). When Rub C was applied at 250 µg/mL and
62.5 µg/mL, the hyphal growth was inhibited and only aggregated unicellular yeast cells
could be observed.

In order to evaluate whether Rub C could address the morphological switch from the
hyphal form of C. albicans to its yeast form, preformed hyphae (24 h and 48 h) were treated
with 62.5 µg/mL Rub C and monitored after 2 h, 5 h, 10 h, and 18 h. Already after 2 h
treatment with Rub C, aggregated yeast cells could be detected in both 24 h- and 48 h-old
hyphae. The most pronounced effect was achieved after 18 h incubation, with Rub C being
more effective on 24 h-old hyphae than on 48 h-old ones (Figure 8).
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Figure 7. Effects of Rub C on the planktonic cells of C. auris and C. albicans. Both pathogens were
incubated with Rub C in RPMI 1640 (supplemented with 0.165 mM MOPS [C. auris] or 50 nM glucose
and 50 mM HEPES [C. albicans]) at 37 ◦C for 24 h. All samples were monitored with an optical
microscope using a 63× oil objective. Exemplary images of 2 independent experiments are shown.
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Figure 8. C. albicans cultured in hyphal−growth-promoting medium RPMI 1640 (supplemented with
50 nM glucose and 50 mM HEPES) at 37 ◦C for 24 h or 48 h and treated with 62.5 µg/mL Rub C for
2 h, 5 h, 10 h and 18 h. Conversion of hyphae into yeasts was monitored under a light microscope
using a 63× oil objective. Exemplary images of 2 independent experiments are shown.

In the same setup, we also prepared samples to study C. auris cells via SEM. When
Rub C was applied at concentrations of 250 µg/mL and 15.6 µg/mL, pseudohyphal devel-
opment was inhibited. Moreover, we could observe more extracellular vesicles (EVs) in the
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treated samples, which were especially visible after the treatment with 250 µg/mL Rub C;
the size of the surface-bound vesicles was clearly larger (Figure 9).
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Figure 9. Effects of Rub C on the planktonic cells of C. auris, as shown by SEM micrographs. Cells
were incubated with Rub C in RPMI 1640 (supplemented with 0.165 mM MOPS) at 37 ◦C for 24 h
and exposed to Rub C with indicated concentrations. Differences with regard to cell morphology and
vesicles are observed in the samples treated with 250 µg/mL Rub C (yellow arrows).

3.7. Quantification of Inhibitory Activities of Azaphilones against C. albicans

To evaluate the efficacy of selected rubiginosin- and rutilin-type azaphilones as in-
hibitors for hyphal induction, hyphae gene expression was quantified using the CAI-4
HWP1-lacZ reporter strain [44,45]. In this construct, the HWP1 promotor is combined with
the lacZ gene. The HWP1 cell wall protein is exclusively produced during hyphae growth,
and thus, the lacZ gene (under control of the HWP1 promotor) is only expressed under the
same conditions. With the cleavage of the β-galactosidase substrate o-nitrophenyl beta-D-
galactopyranoside and the resulting photometrically measurable product o-nitrophenol,
hyphae gene expression can be quantified [46,47]. Consequently, higher concentrations
of o-nitrophenol corresponded to greater levels of hyphal expression. We determined the
β-galactosidase activity after 5 h of treatment of the strain C. albicans CAI-4 HWP1-lacZ with
all azaphilones; FA was used as the positive control. The reporter assay exhibited inhibitory
effects for all azaphilones when applied at the highest test concentration of 100 µg/mL.
Among all pigments, Rub C and Rub W exhibited significant inhibitory effects. Rub C
showed the most pronounced inhibitory effects on hyphae gene expression of up to 87%
reduction compared to the control when applied at 100 µg/mL (Figure 10). In addition,
Rub C was able to effectively inhibit the gene expression of hyphae with 71% efficacy even
at the concentration of 6.3 µg/mL (Figure 10).
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Figure 10. Inhibitory effects of selected rubiginosin- and rutilin-type azaphilones on the hyphal
development of C. albicans. Production of o-nitrophenol by β-galactosidase expression as a measure
of HWP1 expression after 5 h of incubation. FA was used as the positive control and methanol
as solvent control. Error bars indicate SD with duplicates in three biological repeats; p values:
*** p < 0.001.

4. Discussion

The discovery of novel therapeutic agents is crucial for combating the growing problem
of antibiotic resistance in fungal infections. In this context, azaphilones, a group of fungal
secondary metabolites, have been studied extensively for their antimicrobial and cytotoxic
properties, gaining increasing attention for their potential as therapeutic agents [24].

In this study, we investigated the activity of selected rubiginosin- and rutilin-type
azaphilones against biofilm-related bacterial and fungal pathogens (S. aureus, P. aeruginosa
as well as C. albicans [DSM 1665, DSM 11225], CAI-4 HWP1-lacZ, and C. auris) and their
cytotoxicity against two cell lines. The fungal pigments did not exhibit any inhibitory
activity against all tested strains of C. albicans and C. auris. Azaphilones bearing OA moiety,
such as Rub A and Z, Rut A, and B, demonstrated cytotoxic properties, while azaphilones
substituted by an aliphatic moiety instead of the OA motif, like Rub C and W, did not
exhibit such effects. Additionally, the dimeric OA-carrying Rut A (1.2 µM; 1.1 µM) and
B (2.2 µM; 1.5 µM) demonstrated stronger cytotoxicity against L929 and KB-3-1cell lines
than the monomeric OA-carrying azaphilones Rub A (3.2 µM; 5.2 µM) and Z (4.7 µM;
5.2 µM) [28]. These cytotoxic effects might be attributed to the presence of an OA moiety
within the molecule [28], although no cytotoxicity could be observed for OA alone [49].

In addition to the antimicrobial properties of the selected azaphilones, we also tested
the inhibitory activity against biofilm formation. Among all pigments, Rub C exhibited the
most pronounced effects against the biofilm formation of C. albicans and C. auris without
being lethal (MIC > 250 µg/mL) or cytotoxic against the tested cell lines in the tested
range (37 µg/mL–0.63 ng/mL). Rub C exhibited promising inhibitory effects against the
biofilm formation of C. auris (between 2 and 62.5 µg/mL) and C. albicans (>7.8 µg/mL) of ca.
50% and ca. 80%, respectively. In contrast, Rub W and A demonstrated weaker activities
against the biofilm formation of C. auris and C. albicans, respectively. At the highest test
concentration (250 µg/mL), all azaphilones showed effects towards C. albicans biofilm for-
mation. Tentative structure–activity relations let us assume that an increase in lipophilicity
affected the inhibitory effects of the selected azaphilones. Thus, azaphilones with a long
lipophilic side chain exhibited stronger inhibitory effects against biofilm formation and
hyphal development than those carrying an OA moiety. In line with this observation, Rub
W, which differs in the number of carbon atoms in the side chain, was less effective than
Rub C. It is likely that more lipophilic compounds can penetrate biological membranes
more easily [50]. As a result, lipophilic compounds may have better access to their target
sites within the cell, leading to enhanced activity [51,52]. In the case of Rub C, the structure
of the side chain resembles to some degree that of FA. Interestingly, Rub C demonstrated
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similar, or even stronger, activity than FA, which was used as the positive control. FA is a
known inhibitor of hyphal growth and the biofilm formation of C. albicans [53–55].

As the treatment of different maturation stages of C. auris biofilms showed, Rub C
prevented biofilm formation during the first stage of biofilm development with the highest
efficacy when given shortly after the attachment phase. This efficacy was reduced when
biofilms were treated after 12 h and 24 h of growth. Since the hyphae/pseudohyphae
of C. albicans and C. auris are essential to attach to certain surfaces and to form robust
biofilms [56,57], we hypothesized that Rub C might inhibit the formation of biofilms by
affecting the growth of pseudohyphae or hyphae. Pseudohyphae in C. auris are known
to adapt to stressful living conditions, such as high concentrations of salts [17,58]. In
addition, the yeast-to-hyphae transition of C. albicans occurs during infections and allows
for the pathogen to escape from macrophages by destroying the cell membrane via po-
larized growth [59]. This invasive growth can also cause damage to tissues by invading
epithelial cells and causing bloodstream infections, resulting in larger damages in human
hosts [60–63].

According to visualization via CLSM analysis, Rub C caused changes in the morphol-
ogy of C. auris biofilms. Especially high concentrations lead to a very dense and compact
surface-bound structure without visible hyphae, while a Rub C concentration of 62.5 µg/mL
resulted in a more aggregated and porous-appearing biofilm structure. Furthermore, the
results of CFU analysis revealed a significant increase in cell growth following 12 h of
treatment with a concentration of 250 µg/mL of Rub C. However, after 24 h of incubation,
the growth was inhibited compared to the control. This finding is consistent with the
observations from CLSM images acquired at the same concentration of 250 µg/mL Rub
C after 24 h of treatment, which also showed more biomass compared to the control; this
indicates an increased growth along with reduced metabolic activity of the cells. This
could be attributed to a strong, initial promotion of non-hyphae growth in the presence
of 250 µg/mL Rub C, followed by a decrease in metabolically active cells due to nutrient
limitations within the batch system after 24 h. This dense and thick cell layer at the surface
also explains the increase in biomass in the CV assay of C. auris at high concentrations
(>125 µg/mL).

Indeed, we could visualize that Rub C inhibited the pseudohyphae and hyphae
formation of C. auris and C. albicans via light microscopy. Additionally, we performed
a reporter gene assay which confirmed the inhibition of the hyphae development of C.
albicans upon treatment with 12.5 µg/mL Rub C. The construct of the hyphal wall protein
HWP1 promoter and the enzyme ß-galactosidase showed a reduction in enzymatic activity
by 87% for Rub C and 39% for Rub W at concentrations above 12.5 µg/mL, while the
other tested azaphilones only displayed inhibitory activity at the highest concentration
(100 µg/mL). Based on these results, we assume that the biofilms of C. auris (treated with
0.5 µg/mL to 62.5 µg/mL Rub C) and C. albicans (treated with 7.8 µg/mL to 250 µg/mL
Rub C) could be removed more easily by washing steps in the CV assays because they
lacked pseudohyphae and hyphae—factors which are impeding the disturbance of C.
albicans biofilms by external forces (e.g., vortexing, sonification) [56]. Similarly, biofilms
containing pseudohyphae in C. auris possessed enhanced structural integrity compared to
those lacking pseudohyphae [57].

EVs produced by C. auris are known to play crucial roles in various cellular pro-
cesses [64]. Interestingly, in the SEM images of C. auris, we found that more and larger Evs
were present after the treatment with high concentrations of Rub C (250 µg/mL) compared
to the control. Thus, we not only observed growth-promoting effects on vegetative yeast
cells along with inhibitory effects on pseudohyphae formation upon treatment with high
concentrations of Rub C for C. auris, but also a release of EVs, in line with reports from C.
albicans [65,66]. Due to shared biological processes in biofilm and hyphae regulation, C.
albicans and C. auris might exhibit similar characteristics in EV production, as the study
by Zamith-Miranda et al. let assume [64]. This multifactorial process might explain the
differences in the structural architecture observed in the CLSM images. While high con-
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centrations of Rub C promoted the growth of single yeast cells and resulted in a more
compact and flattened biofilm structure, lower concentrations of Rub C did not stimulate
vegetative growth, but still effectively inhibited the pseudo/hyphae formation of C. albicans
and C. auris.

5. Conclusions

Rub C, a fungal pigment derived from the stromata of H. rubiginosum, has demon-
strated significant potential in inhibiting biofilm formation and yeast-to-hyphae transition
against the two opportunistic fungal pathogens C. albicans and C. auris. This inhibition
occurs in a concentration range below cytotoxic or lethal effects. Both biofilms and hyphae
formation are critical virulence factors of these pathogens and likely strongly linked to each
other. The encouraging aspect of our findings is that Rub C effectively targets these viru-
lence factors without exhibiting cytotoxic effects on the tested mammalian cell lines, making
it a promising candidate for therapeutic use in future. Potential applications could be the
pre-therapeutical coating of medical devices; this is similar to the already investigated
known biofilm inducer filastatin, which inhibited hyphal morphogenesis and the adhesion
of C. albicans to polystyrene and human cells [67,68]. To gain a deeper understanding about
the mechanisms of Rub C on both biofilm and hyphal inhibition, further investigations are
needed to decipher the molecular mechanism.
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attached cells [2 h]) calculated by Imaris 9.31; Table S1: MIC assay experiment parameters. Table S2:
Selected azaphilones were tested against the formation of biofilm of S. aureus, P. aeruginosa as well
as C. auris and dispersal effect on preformed biofilm of S. aureus compared to solvent control (=0%),
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solvent control (=0%). SDs are shown as ±SD.
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